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The ability to control the active concentration of neurotransmitters Scheme 1. Structures of (25,4R)-4-Substituted Glutamate
in a spatially and temporally precise manner has revolutionized the Analogues
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activating ligand, while the other configuration is, ideally, inert RO
toward th.e system of stgdy.Whlle 'phptlochromlc nicotinic PaPPhas Oul Cor ﬂ (52%, 2 steps)
acetylcholine receptor agonistenzyme inhibitors,and regulatory (60%) 07y “COE

peptide§ have been reported, their benefits have been tempered 7
by the difficulty of achieving perfect on/off activity between stétes.
Their successful implementation, however, avoids many disadvan-
tages of caged systems, including precursor instability and photo-
product toxicity©

We recently developed a light-activated iGIuR®6 that is based on

a photoisomerizable agonist tethered to an engineered cysteine. Compound 2 was assayed with whole-cell voltage clamp
Encouraged by this success, we investigated the possibility of arecordings in HEK293 cells transiently expressing wild-type

nontethered photochromic agonist that could function at wild-type iGIUR6(Q) and pretreated with 0.3 mg/mL concanavalin A (ConA)

rgceptors. Obur.desljgn lvvas based ulpon the rr]eport of a series gtto block desensitizatiott. Channel activation depended on the
(2S4R)-4-substituted glutamate analogues that are potent an wavelength of irradiation, displaying increased inward currents in

selective iGIURS and 6 kainate receptor (KAR) agoni3tin the trans relative to thecis state (Figure 1). Activity was

partic_ular, we decided to replace the napthyl group of LY339434 competitively blocked by the non-NMDA receptor antagonist
(1) with an azobenzene to generate comporicheme 1). We DNQX (Supporting Information}

en\éis!oned th?{; the chang(z.ifr; shape z;nd [])cf(.)la.\rity be:]mz To investigate theis/transagonist profile of2, dose-response
?n Cd'sf \(/jv_ou d gent_erate ifferences in affinity to the receptor 65 were generated with iIGIUR5(Q) and iGIUR6(Q) under both
'gand binding domains. . . . 380 and 500 nm light (Figure 2). In agreement with previous reports
The stereoselective synthesis Dfvas achieved starting from of (2S4R)-4-glutamic acid analogués, 2 demonstrated high
N'BOC_ protecteq ethyl pyroglutama@a (SChe_me 2). Diastereo- selectivity at iGIUR5 over iGIUR6 receptors, with approximately
selgctwe alkylation o8 with propargyl bromide gave alkyné half-maximal efficacy with respect to a 3@ glutamate evoked
which _underwent hydrpstannatlpn to_ af_ford vinyl stanndhe response. The apparent agonist affinity (BQf iGIUR5 was 9
Palladium-catalyzed Siille coupling with iodoazobenzén®b- uM under 500 nm illumination and reducedl0-fold under 380
tained by the condensation of 4-iodoaniline with nitrosobenzene, ‘nm light. Due to the solubility constraints af we were unable to
then gave thN_BOC, protected azobgnzene pyroglutarr?alﬂélnally, generate full titration curves at iGIUR6. The AMPA receptor iGIuR2
deprotection of7 yielded 2 as the dihydrate, monosodium salt. failed to produce inward currents in the presence of 2502,

demonstrating the subtype selectivity of this agonist.
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 Department of Molecular and Cell Biology. Activation and deactivation proceeded at rateg 6oonm = 310
£ Current address: Centre de Recerca en Bioenginyeria de Catalunya, Barcelonat 15 mS;zo—330nm = 250+ 14 ms; meant SEM, n = 3) slower
Spain 08028. f i it ; i
§Biophysics Graduate Program. than the microsecond tlmg scale of traditional uncaging experi
#Materials Science Division and Physical Bioscience Division. mentst’ However, our studies were conducted at light intensities

NMR experiments with in situ illumination of the sample
revealed photostationary states containing 26(B3%cis-2 at 380
nm and 89+ 1% trans2 at 500 nm (meant SEM, n = 3).13
Furthermore, the half-life of thermal relaxation frams- to trans-2
in the dark was measured at #83 h (meant SEM, n = 3).
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Figure 2. Dose-response curves for inward currents evoke@ byiGIuUR5
and iGIuR6 expressing HEK293 cells under 380 and 500 nm illumination.
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Figure 3. Whole-cell current clamp recording of cultured rat hippocampal
neurons in the presence of 281 2 under 380 and 500 nm illumination.

(4.8 mW/mn# at 500 nm and 1.8 mW/m#at 380 nm) several
orders of magnitude weaker than laser pulse-photolysis techniques.
Much faster rates of isomerization are expected at comparable light
intensitiest®

We tested the ability o2 to depolarize cultured rat hippocampal
neurons, which are known to express the KAR subunits iGIuUR6
and KA2, but not iGIURS? Neurons were exposed to a 25/
concentration o2 under 380 nm light and current clamped-&85
mV, without pretreatment with ConA. Switching wavelengths
between 380 and 500 nm light was then sufficient to trigger, and
extinguish, sustained trains of action potentials (Figure 3). While
iGIuR6 channels are only activated to a small extent auRb
(Figure 2), this can still produce significant depolarization. Given
the large number of receptors in the cell, only a small fraction needs

to be concurrently activated by glutamate release to trigger neuronal (19)

firing.

Taken together, these results describe a simple approach for

obtaining remote control of iGIuR activity and neuronal firing with
a photochromic agonist. The active agonist is subtype-specific,
possesses good efficacy and affinity, and can be conveniently

controlled by the wavelength of light used. Future work will concern
the synthesis of substituted analogues2adind in-depth studies
profiling their selectivity, receptor desensitization, and utility in
neuronal excitation. Ideally, these photochromic agonists will
become a valuable complement to irreversibly caged neurotrans-
mitters as well as other methods of remote neuronal cofftréi.
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